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Abstract: The method of increments, which is a wavefunction-based correlation method
for solids, is extended to metals. Whereas the Hartree-Fock energy is calculated in the
infinite periodic solid, the correlation energy of the solid is expanded in terms of localised
orbitals or a group of localised orbitals. For the metals the so-called correlation energy
increments are determined in finite, properly embedded fragments of the metal. First
applications to the ground-state properties of solid mercury yield very good agreement
with experiment[1, 2, 3]. In this paper we present the extension of the method to solid
barium. Whereas the metallic character in mercury is due to the hybridisation of the
6s2 electrons with the 6p orbitals, in barium it is due to the hybridisation with the 5d
orbitals. Due to a proper embedding scheme we can to model the electronic structure of
bulk barium and In the case of barium we have to use multi-reference methods for the
incremental treatment of the correlation energy.

Keywords: Ab-initio calculation; Electron correlations; Method of increments; Heavy met-
als;

PACS: 31.10.+z, 31.25.Nj, 61.50.Ah, 61.50.Lt

1 Introduction

It is nowadays possible to calculate properties from first principles for a wide range of materials.
This is mainly due to the success of density-functional theory (DFT). But especially for heavier
elements the density functional methods have their difficulties due to the approximations in the
exchange-correlation functional. In particular for mercury they can not predict the ground-state
structure and an reasonable cohesive energy[3].
Here, we want to present an alternative to DFT, invoking the wavefunction-based ab-initio meth-
ods of quantum chemistry. To use these methods for solids, it is recommended to transform the
extended Bloch states of the solid in localised Wannier states and perform the correlation calcu-
lation with the localised orbitals yielding the family of local correlation methods[4, 5, 6]. The
method of increments was developed specially for the purpose of calculating the correlation energy
of a solid (for a review see [7]). In this approach the correlation energy is calculated in the first step
as the sum of independent contributions of translationally invariant localised orbitals or groups of
localised orbitals. As corrections the non-additive parts of two, three or more localised orbitals are
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added. If the group of localised orbitals is chosen reasonably this partitioning of the correlation
energy of the solid yields a quickly converging series. Due to the partitioning it is necessary that
the correlation method used for the individual increments be size-extensive, but no further restric-
tions are necessary.
The method of increments has been successfully applied to ground-state properties of insulators
and semiconductors ranging from strongly bound ionic (including transition-metal oxides and lan-
thanide nitrides and oxides) or covalent systems to weakly bound van der Waals solids. The
generalisation to metals has been first applied to solid mercury[1, 2, 3], where a single-reference
coupled cluster approach was used for the correlation calculation. Here we present preliminary
results for solid barium, where in contrast to mercury the metallic character is d-like and a multi-
reference correlation treatment is necessary.
The paper is organised as follows: In the next section the method of increments for metals is pre-
sented and the embedding for the metals is described. In Section III the Hartree-Fock results for
mercury and barium are discussed. In Sec. IV the free barium dimer is compared to the embedded
two-body increment of solid barium. Conclusion and outlook follows in Sec. V.

2 The method of increments for metals

We are setting up a many-body expansion for the correlation energy of the solid per unit cell (u.c.)
of the form

Esolid
corr =

∑

I∈u.c.

εI +
1

2

∑

I 6=J
I∈u.c.
J∈solid

∆εIJ +
1

6

∑

I 6=J 6=K
I∈u.c.

J,K∈solid

∆εIJK + · · · . (1)

The partitioning is done in this way, that the exact correlation energy of the solid is given by a sum
of all increments. Whereas the first index I runs only over the centres of the unit cell, all other
indices J,K run over the whole solid. The two-body increment ∆εIJ describes the non-additive
part of the excitations involving centre I and J :

∆εIJ := εIJ − (εI + εJ ). (2)

Higher order increments are defined analogously. For the three-body energy increment we get

∆εIJK := εIJK − (εI + εJ + εK) − (∆εIJ + ∆εJK + ∆εIK). (3)

All corresponding two-body and one-body increments are subtracted, only the pure 3-body effects
are included in ∆εIJK .
This partitioning of the correlation energy is only sensible if the series converges quickly enough,
both with the order of increments (i.e., 3-body increments should be significantly smaller than
two-body increments, etc.) and with the distance of the orbital groups involved in the increments.
Increments involving distant orbital groups must decay faster than the number of increments
increases in a 3-dimensional system. For a semiconductor or an insulator, increments with distant
orbital groups interact only via van der Waals and thus decay like r−6, whereas the number of
pairs grows with r2, so an overall decay of r−4 guarantees the convergence with respect to the
distance of orbital groups.
A direct transfer of this approach to metallic systems is not possible, however, since localised
orbitals become very long-range entities here and a many-body expansion in terms of such orbitals
cannot be expected to have useful convergence characteristics. In order to make the expansion
still computationally feasible, we have suggested[1, 2] to start from suitable model systems where
long-range orbital tails are absent, and to allow for delocalisation only successively in the course
of the expansion; more specifically, when calculating pair contributions for a given orbital group
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combination (I, J), we allow for delocalisation I → J and J → I, and similarly with the 3-
body terms we allow for delocalisation over the triples of atoms, etc. It is clear that the final
result is not affected, only the convergence properties of the many-body expansion are changed.
As an additional advantage, we can calculate individual terms of the expansion from (suitably
modelled/embedded) finite clusters of reasonable size. In the case of mercury and barium, for
example, we can force localisation of the solid by using a s-type atomic basis set for describing the
valence-electron system. This way, delocalisation due to sp-mixing or sd-mixing is avoided, but
still each atom has its correct crystal surroundings concerning the electrostatic interaction. Due
to the metallic embedding scheme even the conduction bands are localised in the central region.
The incremental expansion has to take care subsequently of the non-additive effects of correlation
and delocalisation.

3 Hartree-Fock results for mercury and barium
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Figure 1: The rhombohedral lattice structure (left) of Hg and the bcc one (right) for Ba

The method of increments works well only for the expansion of the correlation energy, because
the correlation hole in a solid is of short-range. The Hartree-Fock part has to be calculated in the
extended systems to describe the long-range Coulomb interaction properly. Therefore we perform
periodic Hartree-Fock calculations using the program package CRYSTAL98 [8].
Mercury condenses below 233K into the rhombohedral structure, which can be described by two
parameters, a bond length a = 3.005 Å and rhombohedral angle α = 70.53o [9] (see Fig.1). Barium
has a body-centred cubic (bcc) structure with a lattice constant of 5.0227Å [9] which corresponds
to a nearest neighbour distance of 4.3498Å (see Fig.1).
The chemically inactive [Kr]4d104f14 core of Hg and Ba is simulated by an energy-consistent
scalar-relativistic pseudopotential (PP)[10]. The basis set used is a contracted Gaussian type
orbital (CGTO) set, (6s6p6d)/[5s4p3d] for Hg[2] and (7s8p3d)/[4s4p3d] for Ba (see Table 1), both
optimised for the experimental crystal structure. The Hartree-Fock band structure of mercury
and barium is plotted in Fig.2. For mercury the filled 5d bands show nearly no dispersion and lie
about 0.5 Hartree below the Fermi level, the metallic character arises from the 6sp mixing at the
L-point. At the Γ-point a gap of more than 1 Hartree occurs. The valence band has predominantly
s-character. This is also true for barium. But in contrast to mercury the metallic character arises
due to 5d − 6s mixing especially at the H-point. The unoccupied 5d shell shows a dispersion of
about 0.5 Hartree and the centre of the 5d bands lies only about 0.2 Hartree over the Fermi level.
The 6p band is centred above the 5d bands. The main difference between the two band structure
is the position of the 5d bands. This is also seen in the electronic density of states (see Fig.3).
Whereas in mercury the density of state is half s and half p-like at the Fermi level, for barium we
see two third d character and one third sp character.
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s-exp. contr. p-exp. contr. d-exp. contr.
13.329420 0.078383 8.497514 0.276899 2.603516 1.000000
11.319460 -0.138024 7.646964 -0.572659 1.055567 1.000000
3.579639 1.131201 5.985080 0.429937 0.110000 1.000000
2.637996 -1.492940 2.422947 -0.354379
0.918054 1.000000 0.883951 -0.198726
0.340000 1.000000 0.651175 1.000000
0.050000 1.000000 0.260000 1.000000

0.060000 1.000000

Table 1: The crystal-optimised basis set for Ba for the 10-valence-electron energy-consistent scalar-
relativistic pseudopotential (PP).
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Figure 2: The Hartree-Fock band structure of Hg in the rhombohedral structure (left) and of Ba
in the bcc structure (right).
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Figure 3: The Hartree-Fock density of states of Hg in the rhombohedral structure (left) and of Ba
in the bcc structure (right). The Fermi energy is in both cases at zero.
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method Re [Å] De [eV]
CCSD(T) 5.162 0.110
CASPT2 5.210 0.120
CIPSI[12] 4.881 0.202
LDA[13] 4.749 0.355
CCSD(T)[13] 5.079 0.1368

Table 2: The equilibrium distance and dissociation energy for the barium dimer with different
methods in comparison to the values from the literature.
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Figure 4: The dissociation curve of Barium dimer for the single-reference coupled cluster method
and the complete active space perturbation theory second order

4 Comparison between free and embedded Ba2

Whereas for the free mercury dimer it is known, that only highly correlated correlation methods
yield a reasonable result for the equilibrium distance and binding energy, less data are available in
the literature for the free barium dimer. Therefore we determined in a first step the equilibrium
distance and dissociation energy for the barium dimer with different methods (see Fig. 4). We
applied the scalar-relativistic 10-valence-electron pseudopotential[10] with the corresponding un-
contracted (9s9p6d4f) basis set optimised for MP2 calculations[10]. Additionally two g functions
with the exponents 0.4 and 0.8 are added. All 10 valence electrons per atom are correlated. The
active space in the CAS calculations is 2 active orbitals per atom. The dissociation curves are
BSSE corrected. The program package Molpro[11] was used for all correlation calculations. In
Table 2 we summarised our results and compared with the values in the literature.

We only performed the calculations for the free dimer to test our methods and to analyse the
electronic structure at the equilibrium distance and at the nearest neighbour distance of the solid.
Our CCSD(T) results agree well with the published one[13]. Due to the somewhat smaller basis
set our equilibrium distance is a little bit larger and the dissociation energy smaller. The free
barium dimer can be well described with a single reference method, a multi-reference treatment
like the CASPT2 here yielding quite similar results to the CCSD(T) treatment. If we analyse the
CASSCF wavefunction for an active space of 2 orbitals per barium atom, we see (Table 3) for
the equilibrium distance, that the leading configuration (coefficient 0.95) is a bonding σ orbital,
followed by configurations where 2 electrons are excited to a π-like orbital (coefficient 0.12). For
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Ba2 free free emb. emb.
distance 5.00Å 4.35Å 4.35Å 5.028Å
CI-coeff. 0.95 (σ) 0.95 (σ) 0.78 (σ) 0.86 (σδ)

0.12 (π) 0.20 (π) 0.49 (δ) 0.37 (σπ)
0.12 (π) 0.20 (π) 0.20 (δ) 0.26 (σπδ)

val. pop. s 1.84 1.82 0.52 0.88
p 0.13 0.13 0.11 -0.02
d 0.03 0.05 1.27 1.04

Table 3: The three leading CI coefficient of an CASSCF calculation of the Ba dimer at different
distances and in comparison of the free dimer and the in a fragment of a the bcc solid embedded
dimer. The predominant character of the configuration is given in parenthesis. The valence popu-
lations per barium atom determined with a Mulliken population analysis for the CAS wavefunction
splitted according to the angular momentum.

the equilibrium distance also configurations with single occupied orbitals are important (coefficient
≈0.12).
If we regard the free dimer at a distance of 4.35Å, which is the nearest neighbour distance in the
solid, not much is changed for the CAS-wavefunction. Still the leading configuration (coefficient
0.95) is a σ bond, whereas the importance of configurations with π-like orbitals increases (coefficient
0.20), but the coefficients of configurations with single occupied orbitals are below 0.05. Having in
mind the strong d character of the conduction band in solid barium, it can not be generated just
by reducing the distance between the atoms.
Therefore we generate an embedding for the barium dimer to simulate the solid structure. Around
the dimer with the nearest neighbour distance (4.35Å) we arrange 20 barium atoms in the solid bcc
structure and around the second nearest neighbours (5.028Å) we arrange 22 barium atoms. The
embedding atoms are described with a large-core pseudopotential[10], only the 2 valence electrons
are treated explicitly. To prevent delocalisation to the embedding region, we supply only a minimal
s basis set to the embedding atoms. The procedure is as follows. First all atoms are described
with minimal basis set only and the orbitals are localised according to the Foster-Boys procedure.
The orbitals of the embedding are kept frozen whereas the orbitals on the two central atoms are
reoptimized with the full basis set (9s9p6d4f). The character of the orbitals changes from purely
s-like to a significant admixture of d and p character. Performing a CASSCF calculation with an
active space of only 2 orbitals per barium atom, the leading coefficient the σ-bond is now only
0.78, and the next important configurations are not longer p-like as in the free dimer, but d-like
with an coefficient of 0.49. Due to the embedding we can now model the electronic structure of the
solid. In the embedded dimers the character of the wave-function is a mixture of s and d character
of about the same ratio as the mixture in the density of states at the Fermi level in the periodic
solid.

5 Conclusion and Outlook

We have here presented the extension of the method of increments to metals. Whereas for solid
mercury a single-reference correlation method is sufficient, for barium it is necessary to use a multi-
reference scheme due to the quasi-degenerate empty 5d shell. That is qualitatively different to the
barium dimer, where the 5d orbitals have no significant role in the binding which therefore can
be well described with a single-reference method. The lowering of the d level is not caused by the
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shortening of the distance between the barium atoms, but due to three-dimensional packing in bcc
solid. We have shown, that we can model the situation in the solid via a embedding describing the
electrostatic interactions but not allowing for a delocalisation in the embedding region.
With these results we can now start to perform an incremental expansion for the correlation energy
of solid barium. Without changing the general formalism it is possible to apply the method of
increments to quasi-degenerate systems. The correlation energy is now partitioned into a CASSCF
part, which describes the static correlations and yields the correct dissociation limit, and a MR
part for the dynamical correlations. In the case of metals, we select an active space for the CASSCF
calculation including the important bands around the Fermi level. The dynamical correlations are
treated on top of the MCSCF wave-function with an approximately size-extensive multi-reference
correlation method. For a one-dimensional model system of Li-atoms we used an MR averaged
coupled pair functional method and achieved a converging incremental expansion[14]. Work is
underway in our group to extend the multi-reference method of increments to solid barium by
using a multi-reference perturbation theory for the dynamical correlations.
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